
TRECVID
INSTANCE SEARCH
(INS)
Shin’ichi Satoh, National Institute of Informatics
Duy-Dinh Le, University of Information Technology,
Vietnam National University HCMC
Vinh-Tiep Nguyen, University of Science, Vietnam
National University HCMC

TRECVID (from TRECVID web site...)
• Workshop series from 2001 to present
• Large-scale laboratory testing for content-based video

analysis and retrieval
• Forum for the

• exchange of research ideas
• discussion of approaches: what works, what doesn’t, and why

• Aims for realistic system tasks and test collections
• unfiltered data
• focus on relatively high-level functionality

• Provides data, tasks, and uniform, appropriate scoring
procedures

TRECVID Instance Search (INS)
• To find “instances” of some object, person, or location in

video
• one specific object, person, or location
• e.g., search for this particular dog
• different manufactured objects which are indistinguishable
• including logos

• Queries will be given as visual examples
• There exist couple of related benchmark datasets

• Oxford Building, Paris (landmarks)
• Flickr Logos (logos)
• UKBench, Stanford Mobile Visual Search (specific objects)
• etc.

Comparison with other benchmarks
• TRECVID INS determines data first: therefore very “wild”

• Other benchmarks define queries first, and then collect
data: therefore objects clearly appear

Ox5k

SMVS

UKB

FL32

Data
• Collection of several hundreds hours of videos for each

year
• Data should contain multiple occurrences of multiple

specific objects.
• Search tasks should be reasonably difficult.

• Sound and Vision (2010): too difficult, too few repeated
instances, otherwise too easy(copies)

• BBC Rushes (2011): including retakes, artificial video
transformations,

• Flickr Creative Commons (2012): reasonable, but still
hard to find repeated instances

• BBC EeastEnders (2013-present): drama series, “small
world” many repeated instances (person, location,
objects, ...)

Task
• 2010-2015: specific object, person, or location
• 2015-present: find a specific person in a specific location

Queries
• Couple of example images with masks
• Original videos are also given (since 2014)

NII baseline INS system
• BoVW-based simple method (ICMR2012)
• no trick, but performed very well
• This baseline works well for objects and locations

(landmarks).
• This baseline software will be made public.
• “Person” queries may need other person-specific

treatment (deep-based face representation, person re-
identification techniques, etc.) and are outside of the
scope of this baseline system

TV2011 TV2013

TV2014

NII baseline 22.5

TV2015

DPM
reranking

DPM
reranking
+ RCNN

Introduction
• KAORI-INS15 is a framework for the TRECVID-Instance Search Task

developed at Video Processing Lab@NII.
• It is the baseline for the INS system ranked 1st in TRECVID-INS 2013,

and TRECVID-INS 2014.
• The framework uses the BoW approach with large codebook size for

fast video retrieval given a query example.

Query
Mercedes Logo

Result

INS Search
System

Method Overview
• Keypoint detector: Hessian-Affine.
• Descriptor: RootSIFT.
• Codebook size: 1M.
• Quantization: Hard assignment.
• Others: tf-idf weighting, average pooling, inverted index.

Ref: Three Things Everyone Should Know to Improve Object Retrieval, Relja Arandjelović and Andrew Zisserman (CVPR 2012)
http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/presentation.pdf

Method Overview - Offline Processing

Hessian‐Affine detector+
RootSIFT descriptor

Approximate K‐
Mean(AKM)

Set of features

Dictionary

Create
Inverted File

…

Inverted file

Method Overview - Online Searching
Hessian‐Affine detector+
rootSIFT descriptor

Compute
Word‐IDs

Dictionary

…

Inverted file

Compute
ranked list

Indexed
Words

…

feature
s

Ranked list

External Libraries
• Keypoint detector + SIFT descriptor

• Reference: http://kahlan.eps.surrey.ac.uk/featurespace/web/
• Download (Linux version):

http://kahlan.eps.surrey.ac.uk/featurespace/web/desc/compute_descri
ptors_64bit.ln

• Clustering: AKM → FASTANN + FASTCLUSTER
• Reference: http://www.robots.ox.ac.uk/~vgg/software/fastanncluster/
• Download: http://www.robots.ox.ac.uk/~vgg/software/fastanncluster/

or https://github.com/philbinj
• Installation guide:

http://www.robots.ox.ac.uk/~vgg/software/fastanncluster/fastann/REA
DME.txt and
http://www.robots.ox.ac.uk/~vgg/software/fastanncluster/fastcluster/R
EADME.txt

• VLFeat 0.9.18
• Download: http://www.vlfeat.org/download.html

• NII-KAORI-INS15
• http://www2.satoh-lab.nii.ac.jp/users/ledduy/nii-kaori-ins15/

(trecvid/niitrec)
• MATLAB is needed. And others (Python, ...)

Data Organization
• Working dir → containing all keyframe images, features,

metadata, and results for one experiment (i.e. one dataset →
DB = oxford5k)

• → nii-kaori-ins15/experiments

• Image dataset
• → nii-kaori-ins15/experiments/oxford5k/images_test

• Metadata
• → nii-kaori-ins15/experiments/oxford5k/meta/lst_images.mat
• → generated by create_list_images.m

• Feature
• raw → nii-kaori-

ins15/experiments/oxford5k/feature/hesaff_rootsift_noangle_mat
• BoW → nii-kaori-

ins15/experiments/oxford5k/feature/hesaff_rootsift_noangle_cluster

Component 1: Feature Extraction
• Input: a set of keyframes of a dataset (e.g. oxford5k)

• keyframes, eitheir in jpg or png format, stored in images_test/*.jpg|*.png

• list of keyframes of the dataset, stored in meta/lst_images.mat (generated by
→ create_list_images.m)

• Output: a set of raw feature files, one file for one keyframe stored in
.mat.

• raw features, stored in feature/hesaff_rootsift_noangle_mat
• Workflow → extract_hesaffine_rootsift_noangle4image.m

• Extract keypoints and SIFT descriptor → Param: -hesaff -sift -noangle

• Compute RootSIFT (loading data using vl_ucbread)

• Save data - one feature file (.mat) for one keyframe, each item in the file is
feature descriptors of each keyframe.

• Can be run in parallel by controlling startShotID and endShotID.
• Processing time for oxford5K (5,063 images)

• → 5 hours (3.76 secs/keyframe - 1,024x768).
• → total feature points: 24.46M → 4,832 feature points/keyframe.

Component 1: Feature Extraction
• Processing time: 3.76 secs/keyframe (1,024x768). oxford5k

→ 5 hours

• Misc
• for visualization:

http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html
• for file format: http://kahlan.eps.surrey.ac.uk/featurespace/web/

Component 2: Codebook Construction

• Input: a set of feature files, each feature file corresponding to a keyframe
image.

• Output: a codebook
• Processing time depends on number of features, codebook size, iterations and

processors
• Sampling features: 10 mins → 24,464,227 feature points (all)
• One iteration: 10 mins → 10 hours (24.46M features clustered to 1M words

with 50 iterations using 24 processors)
• Workflow → sampling_feat4clustering_vgg_hesaff.m + akm.py

• Sampling feature descriptors → Param: 100M for 1M codebook (ratio =
1:100) → sampling_feat4clustering_vgg_hesaff.m → output format must be
hdf5 (hdf5write)

• Run approximate k-means → Param: output, intput, nCluster=1M, nIter =
50 → akm.py

• Note: for simplification, a pre-built codebook can be used to skip this step →
hesaff_rootsift_noangle_cluster.

Component 2: Codebook Construction

• Server/Workstation: 24 cores.

• run_akm.sh
• ./mpirun ‐np 24 ./python2.7nii‐kaori‐

ins15/code/akm.py

Component 3: Feature Coding
• Input: a set of raw feature files (one keyframe → one feature file)

• Output: BoW representation for ALL keyframes (one BIG file after merging all BoW
files corresponding to keyframes)

• Processing time: 4,700 secs/oxford5k
• quantize.m: 0.9 sec/keyframe
• merge_raw_bow_parallel.m: 235 secs
• merge_raw_bow.m: 47 secs

• Workflow → quantize.m + merge_raw_bow_parallel.m + merge_raw_bow.m
• quantize.m:

• Build KDTree of cluster centers for NN search.

• For each visual words, find k-NN (k=1 → hard assignment, k=3 → soft assignment).

• Compute BoW for each keyframe.

• merge_raw_bow_parallel.m

• Merge sets of BoW into small parts.

• merge_raw_bow_m

• Merge parts into one BIG file.
• Re-compute feature vector after calculating tf-idf

Component 3: Feature Coding
• One image (.jpg) → one raw feature file (.mat) → one BoW

representation file.

• extract_hesaffine_rootsift_noangle_4image.m

• quantize.m

• One dataset → merge ALL BoW representation files into
ONE BIG file.

• merge_raw_bow_parallel.m
• merge_raw_bow.m

Image
Extract Feature
(HessAff+RootS

IFT)

Raw
Feature

Quantizati
on

BoW
Feature

Image
Image
Image

BoW
FeatureBoW

FeatureBoW
Feature

Merge ALL
BoW

Feature

ONE
BoW
File

Component 4: Inverted Index Construction

• Input: BIG BoW files of all images.
• Output: inverted index loaded into the memory.
• Processing time: 10-15 secs
• Large RAM is required

• for hard assignment on database config:
• Workflow → load_inverted_index.m

• Load pre-trained codebook and k-d tree → 5-10 secs.
• Load all BOW features of dataset and build inverted index → 4-5

secs.

Component 5: Search Process
• Input: Query image and

region
(x1_y1_x2_y2_imagename.jpg).

• Output: Search result in html
file.

• Processing time: 6
secs/image (mainly for
feature extraction - 3.7 secs
and encoding - 1.5 secs)

• Workflow →
process_query.m

• Process query including:
feature extraction,
quantization, build BOW
feature for query.

• Search query BOW feature on
inverted index structure and
write ranked list to file.

Component 5: Web based Search Process

• Input: Query image and region
(x1_y1_x2_y2_imagename.jpg).

• Output: Search result in html file.
• Processing time:
• Workflow → process_query_web.m

• A user selects a link, upload to the server, and select query region.
• Process query including: feature extraction, quantization, build

BOW feature for query.
• Search query BOW feature on inverted index structure and write

ranked list to file.

Practice - Step 0 - Preparation
• Create a directory structure

• nii-kaori-ins15/code: source code
• nii-kaori-ins15/experiments/oxford5k (DB = oxford5k).

• Copy images of the test dataset into one dir→ all images
in one dir.

• nii-kaori-ins15/experiments/oxford5k/images_test

Practice - Step 1 - Feature Extraction (5 hours)

• Run raw feature extraction → Hessian-Affine keypoint detectors
+ RootSIFT

• extract_hesaffine_rootsift_noangle_4image.m
• lst_images.mat is generated.

• Output .mat files are located in feature dir
• nii-kaori-

ins15/experiments/oxford5k/feature/hesaff_rootsift_noangle_mat
• One .mat file → RootSIFT descriptor of feature points detected

by Hessian-Affine keypoint detectors (~4,800 points/image).

• Processing time: 3.76 secs/image → 5 hours to finish.

• Can be run in parallel to reduce the processing time.

Practice - Step 2 - Codebook Generation

• Run samping feature

• sampling_feat4clustering_vgg_hesaff.m

• akm.py

• Sampling features: 100M for 1M codebook → 10 mins.

• AKM clustering

• Or use pre-built codebook.

Practice - Step 3 - Feature Encoding (1.5 hours)

• Run quantization

• quantize.m

• Processing time: 1.5 secs/image → 1.5 hours.

Practice - Step 4 - Merge BoW (10 mins)

• Run 2 files sequentially

• merge_raw_bow_parallel.m

• merge_raw_bow.m

• Processing time: 10 mins.

Practice - Step 5 - Build and Load Inverted Index

• Run building inverted index

• load_inverted_index.m

• Processing time: 1-2 mins.

Practice - Step 6 - Process Query
• Run query processing

• process_query.m

• Processing time: 8 secs/image.

• raw feature extraction: 3.76 secs,

• feature encoding: 1.5 secs.

• search:

• write2output file: 2 secs.

Experiments on Oxford Building dataset

● Oxford Building Dataset contains
○ 5062 images capture at Oxford (Oxford 5K)
○ And ~100K distractor images (Oxford 105K)
○ 55 queries with ground truth

● MAP for all queries: 65.64 (Oxford5K) and 59.44
(Oxford105K)

Ox5k Ox105k
Triemb 56.0 50.2
SMK 74.9 -

ASMK 78.1 -
CroW 59.2 51.6

R-MAC 66.9 61.6
Ours 65.6 59.4

Ours (tuned) 82.8 75.7

Experiments on TRECVID Instance Search

● TRECVID Instance Search (INS) organized annually by
NIST

● The dataset (from 2013 until now) contains:
○ ~ 244 videos from the BBC EastEnders program
○ ~ 300 GB in storage
○ ~ 464 hours in duration

● Query types:
○ Object
○ Person
○ Location
○ Compound of person and location (from 2016)

TRECVID INS Query examples

Easy topics Difficult topics

● Simple visual context
● Stationary target
● Planar, rigid objects

● Small target
● Moving target: differences in

camera angle, location
● Non-planar, non-rigid

Experiments on TRECVID Instance Search

● Trying with many detectors, descriptors and distance
metrics

● Here is what our configs look like:

...

Experiments on TRECVID Instance Search

● Detector config plays an important role in our baseline
system

Detector Descriptor MAP

Harris-Laplace rootSIFT w/o angle 27.17

Hessian-Affine
(Surrey)

rootSIFT w/o angle 29.56

Hessian-Affine
(Perdoch)

rootSIFT w/o angle 24.37

MSER rootSIFT w/o angle 16.78

Average fusion 31.31

rootSIFT vs Color SIFT

Detector Descriptor MAP

Hessian-Affine root SIFT w/o angle 29.56

Hessian-Affine Color SIFT w/o angle 18.37

MSER rootSIFT w/o angle 16.78

MSER Color SIFT w/o angle 14.10

⇒ In average, color SIFT does not improve the performance

Experiments on TRECVID Instance Search

● Comparing symmetric distance with asymmetric one

Detector Descriptor Distance MAP

Hessian-Affine root SIFT w/o angle L1 28.13

Hessian-Affine root SIFT w/o angle L2 28.83

Hessian-Affine root SIFT w/o angle asymmetric 29.56

⇒ asymmetric distance is better than symmetric ones (L1, L2),
especially for small queries

Asymmetric dissimilarity
• There is inherent asymmetry

between query and database
images for object image retrieval

• Object region in query tends to
be large or is explicitly indicated

• On the other hand, object
regions in database images are
not necessarily large and
background regions may be
large

• Typically used similarity metrics
such as histogram intersection
and Minkowski distances do not
take this fact into account

Cai-Zhi Zhu, Hervé Jégou, and Shin‘ichi Satoh,
``Query-Adaptive Asymmetrical Dissimilarities for
Visual Object Retrieval,'‘ International Conference
on Computer Vision (ICCV2013), 2013.

Asymmetric dissimilarity

Query Image Database Image
Query Image

Database Image

Histogram intersection
Measures common part

Minkowski distance (e.g., Euclid distance)
Measures differenceA part exists in query but

not in database image
The smaller the better

A part exists in database
image but not in query
Cannot be avoided

0

5

10

15

20

25

30

35
TRECVID2013 INS task results

Asymmetric dissimilarity

Histogram intersection

Symmetric vs Asymmetric distance

Small Query L2 Asym

71.45 79.15

4.35 10.01

Small Query L2 Asym

21.17 36.70

66.7 77.95

Some bad cases when using BOW
● BOW model gives bad performance when searching on

○ Small objects
○ Irrelevant object with similar shape

Irrelevant objects with similar shape or texture. Query objects are marked by
red boundary. Light blue lines are visual word matches after spatial reranking

Using DPM to rerank
● Deformable Part Models (DPM) is an algorithm for object

detection. It was designed to handle
○ Small object
○ Partial occluded object
○ Deformable object

Positive example of a query topic (Audi logo). Negative images from Google Images with
“things” keywords

DPM model visualization of Audi logo

DPM reranking with average fusion
● Experiment on TRECVID INS2013 and INS2014

Config Description INS2013 INS2014

BOW baseline The baseline with BOW model 29.56 25.01

DPM reranking Using DPM to rerank top 10K shots of
BOW

19.98 21.23

BOW+DPM Simple average fusion of BOW and DPM 32.89 28.21

⇒ Average fusion of BOW and DPM improves the performance

Advanced fusion of BOW and DPM
● We propose a new fusion score to make agreement

between BOW and DPM. Each type of visual word match
contributes a weighting value in the final fusion score

Using DPM to rerank
● We fine tuned on many configurations to find the best

formula

DPM reranking with average fusion
● Experiment on TRECVID INS2013 and INS2014

Config Description INS2013 INS2014

BOW+DPM Simple average fusion of BOW and DPM 32.89 28.21

Fusion
BOW+DPM

Final fusion of BOW and DPM 35.42 32.49

⇒ The proposed method significantly improves the average fusion

Our performance compare to other
teams

TRECVID INS 2013

Our performance at
INS2013

Our performance compare to other
teams

TRECVID INS 2014

Conclusion

• Brief explanation of TRECVID Instance Search
• Wild instance search benchmark
• BoW-based NII baseline system is explained
• Good for instance search of objects and landmarks (scene)
• Asymmetric dissimilarity is explained (included in the

baseline)
• DPM-based reranking (not included. yet...)

